
 107

Parts You’ll Need for This Chapter

Arduino Uno

Arduino Leonardo

USB cable (A to B for Uno)

USB cable (A to Micro B for Leonardo)

LED

RGB LED (common cathode)

150Ω resistor

220Ω resistor (n3)

10kΩ resistor (n2)

Pushbutton

Photoresistor

TMP36 temperature sensor

Two-axis joystick (SparkFun, Parallax, or adafruit suggested)

Jumper wires

Breadboard

Potentiometer

C h a P t e r

6

USB and Serial Communication

108 Part II ■ Controlling Your Environment

CODE AND DIGITAL CONTENT FOR THIS CHAPTER

Code downloads, video, and other digital content for this chapter can be found at
www.exploringarduino.com/content/ch6.

In addition, all code can be found at www.wiley.com/go/exploringarduino on
the Download Code tab. The code is in the chapter 06 download and individu-
ally named according to the names throughout the chapter.

Perhaps the most important part of any Arduino is its capability to be pro-
grammed directly via a USB serial port. This feature enables you to program the
Arduino without any special hardware, such as an AVR ISP MKII. Ordinarily,
microcontrollers rely on a dedicated piece of external hardware (such as the
MKII) to serve as a programmer that connects between your computer and the
microcontroller you are trying to program. In the case of the Arduino, this pro-
grammer is essentially built into the board, instead of being a piece of external
hardware. What’s more, this gives you a direct connection to the ATMega’s
integrated Universal Synchronous/Asynchronous Receiver and Transmitter
(USART). Using this interface, you can send information between your host
computer and the Arduino, or between the Arduino and other serial-enabled
components (including other Arduinos).

This chapter covers just about everything you could want to know about con-
necting an Arduino to your computer via USB and transmitting data between
the two. Different Arduinos have different serial capabilities, so this chapter
covers each of them, and you build sample projects with each serial commu-
nication technology to get yourself acquainted with how to take advantage of
them as best as possible. Note that, as a result of this, the parts list includes
several types of Arduinos. Depending on which Arduino you are trying to
learn about, you can pick and choose which sections to read, which examples
to explore, and which parts from the parts list you actually need for your
Arduino explorations.

Understanding	the	Arduino’s	Serial	Communication	
Capabilities

As already alluded to in the introduction to this chapter, the different Arduino
boards offer lots of different serial implementations, both in terms of how the
hardware implements the USB-to-serial adapters and in terms of the software
support for various features. First, in this section, you learn about the various
serial communication hardware interfaces offered on different Arduino boards.

 Chapter 6 ■ USB and Serial Communication 109

NOTE To	learn	all	about	serial	communication,	check	out	this	tutorial:		
www.jeremyblum.com/2011/02/07/arduino-tutorial-6-serial-

communication-and-processing/.	You	can	also	find	this	tutorial	on	the		
Wiley	website	shown	at	the	beginning	of	this	chapter.

To begin, you need to understand the differences between serial and USB.
Depending on how old you are, you might not even remember serial (or techni-
cally, RS-232) ports, because they have been primarily replaced by USB. Figure 6-1
shows what a standard serial port looks like.

Figure 6-1: Serial port

The original Arduino boards came equipped with a serial port that you con-
nected to your computer with a 9-pin serial cable. Nowadays, few computers still
have these ports, although you can use adapters to make DB-9 (the type of 9-pin
connector) serial ports from USB ports. Microcontrollers like the ATMega328P
that you find on the Arduino Uno have one hardware serial port. It includes a
transmit (TX) and receive (RX) pin that can be accessed on digital pins 0 and
1. As explained in the sidebar in Chapter 1, “Getting Up and Blinking with the
Arduino,” the Arduino is equipped with a bootloader that allows you to pro-
gram it over this serial interface. To facilitate this, those pins are “multiplexed”
(meaning that they are connected to more than one function); they connect,
indirectly, to the transmit and receive lines of your USB cable. However, serial
and USB are not directly compatible, so one of two methods is used to bridge

110 Part II ■ Controlling Your Environment

the two. Option one is to use a secondary integrated circuit (IC) to facilitate
the conversion between the two (either on or off the Arduino board). This is
the type of interface present on an Uno, where an intermediary IC facilitates
USB-to-serial communication. Option two is to opt for a microcontroller that
has a USB controller built in (such as the Arduino Leonardo’s 32U4 MCU).

Arduino	Boards	with	an	Internal	or	External	FTDI	USB-to-
Serial	Converter
As just explained, many Arduino boards (and Arduino clones) use a secondary
integrated circuit to facilitate the USB-to-serial conversion. The “FTDI” chip
is a popular chip that has just one function: convert between serial and USB.
When your computer connects to an FTDI chip, it shows up in your computer
as a “Virtual Serial Port” that you can access as if it was a DB9 port wired right
into your computer. Figure 6-2 shows the bottom of an Arduino Nano, which
utilizes an integrated FTDI chip.

FTDI chip

Figure 6-2: Arduino Nano with integrated FTDI chip shown

 Chapter 6 ■ USB and Serial Communication 111

NOTE For	your	computer	to	communicate	with	a	FTDI	serial-to-USB	adapter,	you	
need	to	install	drivers.	You	can	find	the	most	recent	versions	for	Windows,	OS	X,	
and	Linux	at	www.ftdichip.com/Drivers/VCP.htm.	This	is	also	linked	from	the	
Chapter	6	page	on	the	Exploring	Arduino	website.

On some boards, usually to reduce board size, the FTDI chip is external to the
main board, with a standardized 6-pin “FTDI connector” left for connecting to
either an FTDI cable (A USB cable with an FTDI chip built in to the end of the
cable) or a small FTDI breakout board. Figures 6-3 and 6-4 show these options.

Figure 6-3: FTDI cable

Figure 6-4: SparkFun FTDI adapter board

C
re

di
t:

 a
da

fr
ui

t I
nd

us
tr

ie
s,

 w
w
w
.
a
d
a
f
r
u
i
t
.
c
o
m

.

112 Part II ■ Controlling Your Environment

Using a board with a removable FTDI programmer is great if you are design-
ing a project that will not need to be connected to a computer via USB to run.
This will reduce cost if you are making several devices, and will reduce overall
size of the finished product.

Following is a list of Arduino boards that use an onboard FTDI chip. Note,
new Arduino boards no longer use an FTDI chip, so most of these have been
discontinued. However, there are still many clones of these boards available
for purchase, so they are listed here for completeness:

■■ Arduino Nano

■■ Arduino Extreme

■■ Arduino NG

■■ Arduino Diecimila

■■ Arduino Duemilanove

■■ Arduino Mega (original)

Following is a list of Arduino boards that use an external FTDI programmer:

■■ Arduino Pro

■■ Arduino Pro Mini

■■ LilyPad Arduino

■■ Arduino Fio

■■ Arduino Mini

■■ Arduino Ethernet

Arduino	Boards	with	a	Secondary	USB-Capable	ATMega	
MCU	Emulating	a	Serial	Converter
The Arduino Uno was the first board to introduce the use of an integrated circuit
other than the FTDI chip to handle USB-to-serial conversion. Functionally, it
works exactly the same way, with a few minor technical differences. Figure 6-5
shows the Uno’s 8U2 serial converter (now a 16U2 on newer revisions).

Following is a brief list of the differences:

■■ First, in Windows, boards with this new USB-to-serial conversion solu-
tion require a custom driver to be installed. This driver comes bundled
with the Arduino IDE when you download it. (Drivers are not needed
for OS X or Linux.)

 Chapter 6 ■ USB and Serial Communication 113

■■ Second, the use of this second microcontroller unit (MCU) for the conver-
sion allowed a custom Arduino vendor ID and product ID to be reported
to the host computer when the board is connected. When an FTDI-based
board was connected to a computer, it just showed up as generic USB-serial
device. When an Arduino using a non-FTDI converter IC (an ATMega
8U2 in the case of early Arduino Unos, now a 16U2) is connected, it is
identified to the computer as an Arduino.

Atmel 8U2
or 16U2 chip

Figure 6-5: View of the Arduino Uno’s 8U2 serial converter chip

■■ Lastly, because the secondary MCU is fully programmable (it’s running
a firmware stack called LUFA that emulates a USB-to-serial converter),
you can change its firmware to make the Arduino show up as something
different from a virtual serial port, such as a joystick, keyboard, or MIDI
device. If you were to make this sort of change, the USB-to-serial LUFA
firmware would not be loaded, and you would have to program the
Arduino directly using the in-circuit serial programmer with a device
like the AVR ISP MKII.

114 Part II ■ Controlling Your Environment

Following is a list of Arduino boards that use an onboard secondary MCU
to handle USB-to-serial conversion:

■■ Arduino Uno

■■ Arduino Mega 2560

■■ Arduino Mega ADK (based on 2560)

■■ Arduino Due (can also be programmed directly)

Arduino	Boards	with	a	Single	USB-Capable	MCU
The Arduino Leonardo was the first board to have only one chip that acts both
as the user-programmable MCU and as the USB interface. The Leonardo (and
similar Arduino boards) employs the ATMega 32U4 microcontroller, a chip
that has direct USB communication built in. This feature results in several new
features and improvements.

First, board cost is reduced because fewer parts are required, and because
one less factory programming step is needed to produce the boards. Second,
the board can more easily be used to emulate USB devices other than a serial
port (such as a keyboard, mouse, or joystick). Third, the single ordinary USART
port on the ATMega does not have be multiplexed with the USB programmer,
so communication with the host computer and a secondary serial device (such
as a GPS unit) can happen simultaneously.

Following is a list of Arduino boards that use a single USB-capable MCU:

■■ Arduino Due (can also be programmed via secondary MCU)

■■ LilyPad Arduino USB

■■ Arduino Esplora

■■ Arduino Leonardo

■■ Arduino Micro

Arduino	Boards	with	USB-Host	Capabilities
Some Arduino boards can connect to USB devices as a host, enabling you to con-
nect traditional USB devices (keyboards, mice, Android phones) to an Arduino.
Naturally, there must be appropriate drivers to support the device you are con-
necting to. For example, you cannot just connect a webcam to an Arduino Due
and expect to be able to snap photos with no additional work. The Due presently

 Chapter 6 ■ USB and Serial Communication 115

supports a USB host class that enables you to plug a keyboard or mouse into
the Due’s on-the-go USB port to control it. The Arduino Mega ADK uses the
Android Open Accessory Protocol (AOA) to facilitate communication between
the Arduino and an Android device. This is primarily used for controlling
Arduino I/O from an application running on the Android device.

Two Arduino boards that have USB-host capabilities are the Arduino Due
and the Arduino Mega ADK (based on Mega 2560).

Listening	to	the	Arduino

The most basic serial function that you can do with an Arduino is to print to
the computer’s serial terminal. You’ve already done this in several of the previ-
ous chapters. In this section, you explore the functionality in more depth, and
later in the chapter you build some desktop apps that respond to the data you
send instead of just printing it to the terminal. This process is the same for all
Arduinos.

Using	print	Statements
To print data to the terminal, you only need to utilize three functions:

■■ Serial.begin(baud_rate)

■■ Serial.print("Message")

■■ Serial.println("Message")

where baud_rate and "Message" are variables that you specify.

As you’ve already learned, Serial.begin() must be called once at the start
of the program in setup() to prepare the serial port for communication. After
you’ve done this, you can freely use Serial.print() and Serial.println()
functions to write data to the serial port. The only difference between the two
is that Serial.println() adds a carriage return at the end of the line (so that
the next thing printed will appear on the following line). To experiment with
this functionality, wire up a simple circuit with a potentiometer connected to
pin A0 on the Arduino, as shown in Figure 6-6.

116 Part II ■ Controlling Your Environment

Figure 6-6: Potentiometer wiring diagram

After wiring your potentiometer, load on the simple program shown in
Listing 6-1 that will read the value of the potentiometer and print it as both a
raw value and a percentage value.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 6 ■ USB and Serial Communication 117

Listing 6-1: Potentiometer Serial Print Test Program—pot.ino

//Simple Serial Printing Test with a Potentiometer

const int POT=0; //Pot on analog pin 0

void setup()

{

 Serial.begin(9600); //Start serial port with baud = 9600

}

void loop()

{

 int val = analogRead(POT); //Read potentiometer

 int per = map(val, 0, 1023, 0, 100); //Convert to percentage

 Serial.print("Analog Reading: ");

 Serial.print(val); //Print raw analog value

 Serial.print(" Percentage: ");

 Serial.print(per); //Print percentage analog value

 Serial.println("%"); //Print % sign and newline

 delay(1000); //Wait 1 second, then repeat

}

Using a combination of Serial.print() and Serial.println() statements,
this code prints both the raw and percentage values once per second. Note that
by our using Serial.println() only on the last line, each previous transmis-
sion stays on the same line.

Open the serial monitor from the Arduino IDE and ensure that your baud
rate is set to 9600 to match the value set in the Arduino sketch. You should see
the values printing out once per second as you turn the potentiometer.

Using	Special	Characters
You can also transmit a variety of “special characters” over serial, which allow
you to change the formatting of the serial data you are printing. You indicate
these special characters with a slash escape character (\) followed by a com-
mand character. There are a variety of these special characters, but the two of
greatest interest are the tab and newline characters. To insert a tab character,
add a \t to the string. To insert a newline character, add a \n to the string. This
proves particularly useful if you want a newline to be inserted at the beginning
of a string, instead of at the end as the Serial.println() function does. If, for
some reason, you actually want to print \n or \t in the string, you can do so by
printing \\n or \\t, respectively. Listing 6-2 is a modification of the previous
code to use these special characters to show data in a tabular format.

118 Part II ■ Controlling Your Environment

Listing 6-2: Tabular Printing using Special Characters—pot_tabular.ino

//Tabular serial printing test with a potentiometer

const int POT=0; //Pot on analog pin 0

void setup()

{

 Serial.begin(9600); //Start Serial Port with Baud = 9600

}

void loop()

{

 Serial.println("\nAnalog Pin\tRaw Value\tPercentage");

 Serial.println("--");

 for (int i = 0; i < 10; i++)

 {

 int val = analogRead(POT); //Read potentiometer

 int per = map(val, 0, 1023, 0, 100); //Convert to percentage

 Serial.print("A0\t\t");

 Serial.print(val);

 Serial.print("\t\t");

 Serial.print(per); //Print percentage analog value

 Serial.println("%"); //Print % sign and newline

 delay(1000); //Wait 1 second, then repeat

 }

}

As you turn the potentiometer, the output from this program should look
something like the results shown in Figure 6-7.

Figure 6-7: Screenshot of serial terminal with tabular data

 Chapter 6 ■ USB and Serial Communication 119

Changing	Data	Type	Representations
The Serial.print() and Serial.println() functions are fairly intelligent when
it comes to printing out data in the format you are expecting. However, you have
options for outputting data in various formats, including hexadecimal, octal,
and binary. Decimal-coded ASCII is the default format. The Serial.print()
and Serial.println() functions have an optional second argument that speci-
fies the print format. Table 6-1 includes examples of how you would print the
same data in various formats and how it would appear in your serial terminal.

Table 6-1: Serial Data Type Options

DATA TYPE EXAMPLE CODE SERIAL OUTPUT

Decimal Serial.println(23); 23

Hexadecimal Serial.println(23, HEX); 17

Octal Serial.println(23, OCT) 27

Binary Serial.println(23, BIN) 00010111

Talking	to	the	Arduino

What good is a conversation with your Arduino if it’s only going in one direc-
tion? Now that you understand how the Arduino sends data to your computer,
let’s spend some time discussing how to send commands from your computer
to the Arduino. You’ve probably already noticed that the Arduino IDE serial
monitor has a text entry field at the top, and a drop-down menu at the bottom.
Figure 6-8 highlights both.

Figure 6-8: Screenshot of serial terminal highlighting text entry field and Line Ending
Options drop-down menu

120 Part II ■ Controlling Your Environment

First, make sure that the drop-down is set to Newline. The drop-down menu
determines what, if anything, is appended to end of your commands when you
send them to the Arduino. The examples in the following sections assume that
you have Newline selected, which just appends a \n to the end of anything
that you send from the text entry field at the top of the serial monitor window.

Unlike with some other terminal programs, the Arduino IDE serial monitor
sends your whole command string at one time (at the baud rate you specify)
when you press the Enter key or the Send button. This is in contrast to other
serial terminals like PuTTy (linked from this chapter’s digital content page at
www.exploringarduino.com) that send characters as you type them.

Reading	Information	from	a	Computer	or	Other	Serial	Device
You start by using the Arduino IDE serial monitor to send commands manually
to the Arduino. Once that’s working, you’ll learn how to send multiple com-
mand values at once and how to build a simple graphical interface for sending
commands.

It’s important to recall that the Arduino’s serial port has a buffer. In other
words, you can send several bytes of data at once and the Arduino will queue
them up and process them in order based on the content of your sketch. You
do not need to worry about sending data faster than your loop time, but you
do need to worry about sending so much data that it overflows the buffer and
information is lost.

Telling the Arduino to Echo Incoming Data

The simplest thing you can do is to have the Arduino echo back everything that
you send it. To accomplish this, the Arduino basically just needs to monitor its
serial input buffer and print any character that it receives. To do this, you need
to implement two new commands from the Serial object:

■■ Serial.available() returns the number of characters (or bytes) that are
currently stored in the Arduino’s incoming serial buffer. Whenever it’s
more than zero, you will read the characters and echo them back to the
computer.

■■ Serial.read() reads and returns the next character that is available in
the buffer.

Note that each call to Serial.read() will only return 1 byte, so you need to
run it for as long as Serial.available() is returning a value greater than zero.
Each time Serial.read() grabs a byte, that byte is removed from the buffer,
as well, so the next byte is ready to be read. With this knowledge, you can now
write and load the echo program in Listing 6-3 on to your Arduino.

 Chapter 6 ■ USB and Serial Communication 121

Listing 6-3: Arduino Serial Echo Test—echo.ino

//Echo every character

char data; //Holds incoming character

void setup()

{

 Serial.begin(9600); //Serial Port at 9600 baud

}

void loop()

{

 //Only print when data is received

 if (Serial.available() > 0)

 {

 data = Serial.read(); //Read byte of data

 Serial.print(data); //Print byte of data

 }

}

Launch the serial monitor and type anything you want into the text entry
field. As soon as you press Send, whatever you typed is echoed back and dis-
played in the serial monitor. You have already selected to append a “newline”
to the end of each command, which will ensure that each response is on a new
line. That is why Serial.print() is used instead of Serial.println() in the
preceding sketch.

Understanding the Differences Between Chars and Ints

When you send an alphanumeric character via the serial monitor, you aren’t actu-
ally passing a “5”, or an “A”. You’re sending a byte that the computer interprets
as a character. In the case of serial communication, the ASCII character set is
used to represent all the letters, number, symbols, and special commands that
you might want to send. The base ASCII character set, shown in Figure 6-9, is a
7-bit set and contains a total of 128 unique characters or commands.

When reading a value that you’ve sent from the computer, as you did in
Listing 6-3, the data must be read as a char type. Even if you are only expecting
to send numbers from the serial terminal, you need to read values as a character
first, and then convert as necessary. For example, if you were to modify the code
to declare data as type int, sending a value of 5 would return 53 to the serial
monitor because the decimal representation of the character 5 is the number
53. You can confirm this by looking at the ASCII reference table in Figure 6-9.

122 Part II ■ Controlling Your Environment

Figure 6-9: ASCII table

However, you’ll often want to send numeric values to the Arduino. So how
do you do that? You can do so in a few ways. First, you can simply compare the
characters directly. If you want to turn an LED on when you send a 1, you can
compare the character values like this: if (Serial.read() == '1'). Note that
the single quotes around the '1' indicate that it should be treated like a character.

A second option is to convert each incoming byte to an integer by subtracting
the zero-valued character, like this: int val = Serial.read() - '0'. However,
this doesn’t work very well if you intend to send numbers that are greater than 9,
because they will be multiple digits. To deal with this, the Arduino IDE includes
a handy function called parseInt() that attempts to extract integers from a
serial data stream. The examples that follow elaborate on these techniques.

Sending Single Characters to Control an LED

Before your dive into parsing larger strings of multiple-digit numbers, start by
writing a sketch that uses a simple character comparison to control an LED.

C
re

di
t:

 B
en

 B
or

ow
ie

c,
 w
w
w
.
b
e
n
b
o
r
o
w
i
e
c
.
c
o
m

.

 Chapter 6 ■ USB and Serial Communication 123

You’ll send a 1 to turn an LED on, and a 0 to turn it off. Wire an LED up to pin
9 of your Arduino as shown in Figure 6-10.

Figure 6-10: Single LED connected to Arduino on pin 9

As explained in the previous section, when only sending a single character,
the easier thing to do is to do a simple character comparison in an if statement.
Each time a character is added to the buffer, it is compared to a '0' or a '1', and
the appropriate action is taken. Load up the code in Listing 6-4 and experiment
with sending a 0 or a 1 from the serial terminal.

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

124 Part II ■ Controlling Your Environment

Listing 6-4: Single LED Control using Characters—single_char_control.ino

//Single Character Control of an LED

const int LED=9;

char data; //Holds incoming character

void setup()

{

 Serial.begin(9600); //Serial Port at 9600 baud

 pinMode(LED, OUTPUT);

}

void loop()

{

 //Only act when data is available in the buffer

 if (Serial.available() > 0)

 {

 data = Serial.read(); //Read byte of data

 //Turn LED on

 if (data == '1')

 {

 digitalWrite(LED, HIGH);

 Serial.println("LED ON");

 }

 //Turn LED off

 else if (data == '0')

 {

 digitalWrite(LED, LOW);

 Serial.println("LED OFF");

 }

 }

}

Note that an else if statement is used instead of a simple else statement.
Because your terminal is also set to send a newline character with each trans-
mission, it’s critical to clear these from the buffer. Serial.read() will read in
the newline character, see that is not equivalent to a '0' or a '1', and it will be
overwritten the next time Serial.read() is called. If just an else statement were
used, both '0' and '\n' would trigger turning the LED off. Even when sending
a '1', the LED would immediately turn off again when the '\n' was received!

 Chapter 6 ■ USB and Serial Communication 125

Sending Lists of Values to Control an RGB LED

Sending a single command character is fine for controlling a single digital pin,
but what if you want to accomplish some more complex control schemes? This
section explores sending multiple comma-separate values to simultaneously
command multiple devices. To facilitate testing this, wire up a common cathode
RGB LED as shown in Figure 6-11.

Figure 6-11: RGB LED connected to Arduino

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

126 Part II ■ Controlling Your Environment

To control this RGB LED, you send three separate 8-bit values (0–255) to set
the brightness of each LED color. For example, to set all the colors to full bright-
ness, you send “255,255,255”. This presents a few challenges:

■■ You need to differentiate between numbers and commas.

■■ You need to turn this sequence of characters into integers that you can
pass to analogWrite() functions.

■■ You need to be able to handle the fact that values could be one, two, or
three digits.

Thankfully, the Arduino IDE implements a very handy function for identifying
and extracting integers: Serial.parseInt(). Each call to this function waits until
a non-numeric value enters the serial buffer, and converts the previous digits
into an integer. The first two values are read when the commas are detected,
and the last value is read when the newline is detected.

To test this function for yourself, load the program shown in Listing 6-5 on
to your Arduino.

Listing 6-5: RGB LED Control via Serial—list_control.ino

//Sending Multiple Variables at Once

//Define LED pins

const int RED =11;

const int GREEN =10;

const int BLUE =9;

//Variables for RGB levels

int rval = 0;

int gval = 0;

int bval = 0;

void setup()

{

 Serial.begin(9600); //Serial Port at 9600 baud

 //Set pins as outputs

 pinMode(RED, OUTPUT);

 pinMode(GREEN, OUTPUT);

 pinMode(BLUE, OUTPUT);

}

void loop()

{

 //Keep working as long as data is in the buffer

 while (Serial.available() > 0)

 Chapter 6 ■ USB and Serial Communication 127

 {

 rval = Serial.parseInt(); //First valid integer

 gval = Serial.parseInt(); //Second valid integer

 bval = Serial.parseInt(); //Third valid integer

 if (Serial.read() == '\n') //Done transmitting

 {

 //set LED

 analogWrite(RED, rval);

 analogWrite(GREEN, gval);

 analogWrite(BLUE, bval);

 }

 }

}

The program keeps looking for the three integer values until a newline is
detected. Once this happens, the values that were read are used to set the bright-
ness of the LEDs. To use this, open the serial monitor and enter three values
between 0 and 255 separated by a comma, like "200,30,180". Try mixing all
kinds of pretty colors!

Talking	to	a	Desktop	App

Eventually, you’re bound to get bored of doing all your serial communication
through the Arduino serial monitor. Conveniently, just about any desktop pro-
gramming language you can think of has libraries that allow it to interface with
the serial ports in your computer. You can use your favorite desktop program-
ming language to write programs that send serial commands to your Arduino
and that react to serial data being transmitted from the Arduino to the computer.

In this book, Processing is the desktop programming language of choice
because it is very similar to the Arduino language that you have already become
familiar with. In fact, the Arduino programming language is based on Processing!
Other popular desktop languages (that have well-documented serial commu-
nication libraries) include Python, PHP, Visual Basic, C, and more. First, you’ll
learn how to read transmitted serial data in Processing, and then you’ll learn
how you can use Processing to create a simple graphical user interface (GUI)
to send commands to your Arduino.

Talking	to	Processing
Processing has a fairly simple programming interface, and it’s similar to the
one you’ve already been using for the Arduino. In this section, you install
Processing, and then write a simple graphical interface to generate a graphical

128 Part II ■ Controlling Your Environment

output based on serial data transmitted from your Arduino. Once that’s work-
ing, you implement communication in the opposite direction to control your
Arduino from a GUI on your computer.

Installing Processing

First things first, you need to install Processing on your machine. This is the
same process that you followed in the first chapter to get the Arduino IDE
installed. Visit http://processing.org/download/ (or find the download link
on the digital content page for this chapter on www.exploringarduino.com) and
download the compressed package for your operating system. Simply unzip it
to your preferred location and you are ready to go! Run the Processing applica-
tion, and you should see an IDE that looks like the one shown in Figure 6-12.

Figure 6-12: The Processing IDE. Does it look familiar?

 Chapter 6 ■ USB and Serial Communication 129

Controlling a Processing Sketch from Your Arduino

For your first experiment with Processing, you use a potentiometer connected
to your Arduino to control the color of a window on your computer. Wire up
your Arduino with a potentiometer, referencing Figure 6-6 again. You already
know the Arduino code necessary to send the analog values from the potenti-
ometer to your computer. The fact that you are now feeding the serial data into
Processing does not have any impact on the way you transmit it.

Reference the code in Listing 6-6 and load it on to your Arduino. It sends an
updated value of the potentiometer to the computer’s serial port every 50 mil-
liseconds. The 50ms is important; if you were to send it as fast as possible, the
Processing sketch wouldn’t be able to handle it as quickly as you are sending it,
and you would eventually overflow the serial input buffer on your computer.

Listing 6-6: Arduino Code to send Data to the Computer—pot_to_processing/arduino_
read_pot

//Sending POT value to the computer

const int POT=0; //Pot on analog pin 0

int val; //For holding mapped pot value

void setup()

{

 Serial.begin(9600); //Start Serial

}

void loop()

{

 val = map(analogRead(POT), 0, 1023, 0, 255); //Read and map POT

 Serial.println(val); //Send value

 delay(50); //Delay so we don't flood

 //the computer

}

Now comes the interesting part: writing a Processing sketch to do something
interesting with this incoming data. The sketch in Listing 6-7 reads the data
in the serial buffer and adjusts the brightness of a color on the screen of your
computer based on the value it receives. First, copy the code from Listing 6-7
into a new Processing sketch. You need to change just one important part. The
Processing sketch needs to know which serial port to expect data to arrive on.
This is the same port that you’ve been programming the Arduino from. In the

130 Part II ■ Controlling Your Environment

following listing, replace "COM3" with your serial port number. Remember that
on Linux and Mac it will look like /dev/ttyUSB0, for example. You can copy the
exact name from within the Arduino IDE if you are unsure.

port = new Serial(this, "COM3", 9600); //setup serial

Listing 6-7: Processing Code to Read Data and Change Color on the Screen—pot_to_
processing/processing_display_color

//Processing Sketch to Read Value and Change Color on the Screen

//Import and initialize serial port library

import processing.serial.*;

Serial port;

float brightness = 0; //For holding value from pot

void setup()

{

 size(500,500); //Window size

 port = new Serial(this, "COM3", 9600); //Set up serial

 port.bufferUntil('\n'); //Set up port to read until

 //newline

}

void draw()

{

 background(0,0,brightness); //Updates the window

}

void serialEvent (Serial port)

{

 brightness = float(port.readStringUntil('\n')); //Gets val

}

After you’ve loaded the code into your Processing IDE and set the serial
port properly, make sure that the Arduino serial monitor isn’t open. Only one
program on your computer can have access to the serial port at a time. Click
the Run button in the Processing IDE (the button in the top left of the window
with a triangle); when you do so, a small window will pop up (see Figure 6-13).
As you turn the potentiometer, you should see the color of the window change
from black to blue.

Now that you’ve seen it working, let’s walk through the code to gain a better
understanding of how the Processing sketch is working. Unlike in Arduino,
the serial library is not imported automatically. By calling import processing
.serial.*; and Serial port; you are importing the serial library and mak-
ing a serial object called port.

 Chapter 6 ■ USB and Serial Communication 131

Figure 6-13: Example windows from Processing sketch

Like the Arduino, Processing has a setup() function that runs once at the
beginning of the sketch. In this sketch, it sets up the serial port and creates a
window of size 500n500 pixels with the command size(500,500). The command
port = new Serial(this, "COM3", 9600) tells Processing everything it needs
to know about creating the serial port. The instance (referred to as “port”) will
run in this sketch and communicate on COM3 (or whatever your serial port is)
at 9600 baud. The Arduino and the program on your computer must agree on
the speed at which they communicate; otherwise, you’ll get garbage characters.
port.bufferUntil('\n') tells Processing to buffer the serial input and not do
anything with the information until it sees a newline character.

Instead of loop(), Processing defines other special functions. This program uses
draw() and serialEvent(). The draw() function is similar to Arduino’s loop();
it runs continuously and updates the display. The background() function sets the
color of the window by setting red, green, and blue values (the three arguments
of the function). In this case, the value from the potentiometer is controlling the
blue intensity, and red and green are set to 0. You can change what color your pot
is adjusting simply by swapping which argument brightness is filling in. RGB
color values are 8-bit values ranging from 0 to 255, which is why the potentiometer
is mapped to those values before being transmitted.

serialEvent() is called whenever the bufferUntil() condition that you
specified in the setup() is met. Whenever a newline character is received, the
serialEvent() function is triggered. The incoming serial information is read
as a string with port.readStringUntil('\n'). You can think of a string as an
array of text. To use the string as a number, you must convert it to a floating-
point number with float(). This sets the brightness variable, changing the
background color of the application window.

To stop the application and close the serial port, click the Stop button in the
Processing IDE; it’s the square located next to the Run button.

132 Part II ■ Controlling Your Environment

SUDOGLOVE PROCESSING DEBUGGER

The	SudoGlove	is	a	control	glove	that	drives	RC	cars	and	controls	other	
hardware.	I	developed	a	Processing	debugging	display	that	graphically	
shows	the	values	of	various	sensors.	You	can	learn	more	about	it	here:		
www.sudoglove.com.

Download	the	source	code	for	the	Processing	display	here:		
www.jeremyblum.com/2011/03/25/processing-based-sudoglove-

visual-debugger/.	You	can	also	find	this	source	code	on	the	Wiley		
website	shown	at	the	beginning	of	this	chapter.

Sending Data from Processing to Your Arduino

The obvious next step is to do the opposite. Wire up an RGB LED to your
Arduino as shown in Figure 6-11 and load on the same program from earlier
that you used to receive a string of three comma-separated values for setting the
red, green, and blue intensities (Listing 6-5). Now, instead of sending a string
of three values from the serial monitor, you select a color using a color picker.

Load and run the code in Listing 6-8 in Processing, remembering to adjust the
serial port number accordingly as you did with the previous sketch. Processing
sketches automatically load collateral files from a folder called “data” in the
sketch folder. The hsv.jpg file is included in the code download for this chapter.
Download it and place it in a folder named “data” in the same directory as your
sketch. Processing defaults to saving sketches in your Documents folder. The
structure will look similar to the one shown in Figure 6-14.

Figure 6-14: Folder structure

The image in the data folder will serve as the color selector.

 Chapter 6 ■ USB and Serial Communication 133

Listing 6-8: Processing Sketch to Set Arduino RGB Colors— processing_control_RGB/
processing_control_RGB

import processing.serial.*; //Import serial library

PImage img; //Image object

Serial port; //Serial port object

void setup()

{

 size(640,256); //Size of HSV image

 img = loadImage("hsv.jpg"); //Load in background image

 port = new Serial(this, "COM9", 9600); //Open serial port

}

void draw()

{

 background(0); //Black background

 image(img,0,0); //Overlay image

}

void mousePressed()

{

 color c = get(mouseX, mouseY); //Get the RGB color where mouse was

pressed

 String colors = int(red(c))+","+int(green(c))+","+int(blue(c))+"\n"; //

extract

values from color

 print(colors); //Print colors for debugging

 port.write(colors); //Send values to Arduino

}

When you execute the program, you should see a screen like the one shown in
Figure 6-15 pop up. Click different colors and the RGB values will be transmitted
to the Arduino to control the RGB LED’s color. Note that the serial console also
displays the commands being sent to assist you in any debugging.

After you’ve finished staring at all the pretty colors, look back at the code and
consider how it’s working. As before, the serial library is imported and a serial
object called port is created. A PImage object call img is also created. This will
hold the background image. In the setup(), the serial port is initialized, the
display window is set to the size of the image, and image is imported into the
image object by calling img = loadImage(“hsv.jpg”).

In the draw() function, the image is loaded in the window with image(img,0,0).
img is the image you want to draw in the window, and 0, 0 are coordinates where
the image will start to be drawn. 0,0 is the top left of the application window.

134 Part II ■ Controlling Your Environment

Figure 6-15: Processing color selection screen

Every time the mouse button is pressed, the mousePressed() function is called.
The color of the pixel where you clicked is saved to a color object named c. The
get() method tells the application where to get the color from (in this case, the
location of the mouse’s X and Y position in the sketch). The sketch converts the
object c into a string that can be sent to the Arduino by converting to integers
representing red, green, and blue. These values are also printed to the Processing
console so that you can see what is being sent.

Ensure that the Arduino is connected and programmed with the code from
Listing 6-5. Run the processing sketch (with the correct serial port specified) and
click around the color map to adjust the color of the LED connected to your Arduino.

Learning	Special	Tricks	with	the	Arduino	Leonardo	
(and	Other	32U4-Based	Arduinos)

The Leonardo, in addition to other Arduinos that implement MCUs that con-
nect directly to USB, has the unique ability to emulate nonserial devices such
as a keyboard or mouse. In this section you learn about using a Leonardo to

 Chapter 6 ■ USB and Serial Communication 135

emulate these devices. You need to be extremely careful to implement these
functions in a way that does not make reprogramming difficult. For example, if
you write a sketch that emulates a mouse and continuously moves your pointer
around the screen, you might have trouble clicking on the Upload button in the
Arduino IDE! In this section, you learn a few tricks that you can use to avoid
these circumstances.

TIP If	you	get	stuck	with	a	board	that’s	too	hard	to	program	due	to	its	keyboard	or	
mouse	input,	hold	down	the	Reset	button	and	release	it	while	pressing	the	Upload	
button	in	the	Arduino	IDE	to	reprogram	it.

When you first connect a Leonardo to a Windows computer, you need to install
drivers, just as you did with the Arduino Uno in the first chapter. Follow the
same directions at http://arduino.cc/en/Guide/ArduinoLeonardoMicro#toc8
for Leonardo-specific instructions. (These instructions are also linked from the
digital content page for this chapter from www.exploringarduino.com.)

Emulating	a	Keyboard
Using the Leonardo’s unique capability to emulate USB devices, you can easily
turn your Arduino into a keyboard. Emulating a keyboard allows you to easily
send key-combination commands to your computer or type data directly into
a file that is open on your computer.

Typing Data into the Computer

The Leonardo can emulate a USB keyboard, sending keystrokes and key com-
binations. This section explores how to use both concepts. First, you write a
simple program that records data from a few analog sensors into a comma-
separated-value (.csv) format that you can later open up with Excel or Google
spreadsheets to generate a graph of the values.

Start by opening the text editor of your choice and saving a blank document
with a .csv extension. To do this, you can generally choose the file type in the
Save dialog, select “All Files,” and manually type the file name with the exten-
sion, such as “data.csv.” The demo video also shows how to create a .csv file.

Next, create a simple circuit like the one shown in Figure 6-16. It will monitor
both light and temperature levels using analog sensors that you have already
seen in Chapter 3, “Reading Analog Sensors.” In addition to the sensors, the
circuit includes a button for turning the logging functionality on and off, and
an LED that will indicate whether it is currently logging data.

136 Part II ■ Controlling Your Environment

Indicator LED Temperature sensor PhotoresistorEnable button

Figure 6-16: Temperature and light sensor circuit

Using the same debouncing function that you implemented in Chapter 2,
“Digital Inputs, Outputs, and Pulse-Width Modulation,” you use the pushbutton
to toggle the logging mode on and off. While in logging mode, the Arduino polls
the sensors and “types” those values into your computer in a comma-separated
format once every second. An indicator LED remains illuminated while you are
logging data. Because you want the Arduino to be constantly polling the state

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

 Chapter 6 ■ USB and Serial Communication 137

of the button, you cannot use a delay() function to wait 1000ms between each
update. Instead, you use the millis() function, which returns the number of
milliseconds since the Arduino was last reset. You can make the Arduino send
data every time the millis() function returns a multiple of 1000ms, effectively
creating a nonblocking 1-second delay between transmissions. To do this, you
can use the modulo operator (%). Modulo returns the remainder of a division. If,
for example, you executed 1000%1000, you would find that the result is 0 because
1000/1000=1, with a remainder of 0. 1500%1000, on the other hand, would return
500 because 1500/1000 is equal to 1, with a remainder of 500. If you take the
modulus of millis() with 1000, the result is zero every time millis() reaches
a value that is a multiple of 1000. By checking this with an if() statement, you
can execute code once every second.

Examine the code in Listing 6-9 and load it onto your Arduino Leonardo.
Ensure that you’ve selected “Arduino Leonardo” from the Tools > Board menu
in the Arduino IDE.

Listing 6-9: Temperature and Light Data Logger—csv_logger.ino

//Light and Temp Logger

const int TEMP =0; //Temp sensor on analog pin 0

const int LIGHT =1; //Light sensor on analog pin 1

const int LED =3; //Red LED on pin 13

const int BUTTON =2; //The button is connected to pin 2

boolean lastButton = LOW; //Last button state

boolean currentButton = LOW; //Current button state

boolean running = false; //Not running by default

int counter = 1; //An index for logged data entries

void setup()

{

 pinMode (LED, OUTPUT); //Set blue LED as output

 Keyboard.begin(); //Start keyboard emulation

}

void loop()

{

 currentButton = debounce(lastButton); //Read debounced state

 if (lastButton == LOW && currentButton == HIGH) //If it was pressed…

 running = !running; //Toggle running state

 lastButton = currentButton; //Reset button value

 if (running) //If logger is running

138 Part II ■ Controlling Your Environment

 {

 digitalWrite(LED, HIGH); //Turn the LED on

 if (millis() % 1000 == 0) //If time is multiple

 //of 1000ms

 {

 int temperature = analogRead(TEMP); //Read the temperature

 int brightness = analogRead(LIGHT); //Read the light level

 Keyboard.print(counter); //Print the index number

 Keyboard.print(","); //Print a comma

 Keyboard.print(temperature); //Print the temperature

 Keyboard.print(","); //Print a comma

 Keyboard.println(brightness); //Print brightness, newline

 counter++; //Increment the counter

 }

 }

 else

 {

 digitalWrite(LED, LOW); //If logger not running, turn LED off

 }

}

/*

* Debouncing Function

* Pass it the previous button state,

* and get back the current debounced button state.

*/

boolean debounce(boolean last)

{

 boolean current = digitalRead(BUTTON); //Read the button state

 if (last != current) //If it's different…

 {

 delay(5); //Wait 5ms

 current = digitalRead(BUTTON); //Read it again

 }

 return current; //Return the current

 //value

}

Before you test the data logger, let’s highlight some of the new functionality
that has been implemented in this sketch. Similarly to how you initialized the
serial communication, the keyboard communication is initialized by putting
Keyboard.begin() in the setup().

Each time through loop(), the Arduino checks the state of the button and runs
the debouncing function that you are already familiar with. When the button
is pressed, the value of the running variable is inverted. This is accomplished
by setting it to its opposite with the ! operator.

While the Arduino is in running mode, the logging step is executed only every
1000ms using the logic described previously. The keyboard functions work very
similarly to the serial functions. Keyboard.print() “types” the given string into

 Chapter 6 ■ USB and Serial Communication 139

your computer. After reading the two analog sensors, the Arduino sends the
values to your computer as keystrokes. When you use Keyboard.println(),
the Arduino emulates pressing the Enter or Return key on your keyboard after
sending the given string. An incrementing counter and both analog values are
entered in a comma-separated format.

Follow the demo video from this chapter’s web page to see this sketch in
action. Make sure that your cursor is actively positioned in a text document,
and then press the button to start logging. You should see the document begin
to populate with data. Hold your hand over the light sensor to change the value
or squeeze the temperature sensor to see the value increase. When you have
finished, press the button again to stop logging. After you save your file, you
can import it into the spreadsheet application of your choice and graph it over
time. This is shown in the demo video.

NOTE To	watch	a	demo	video	of	the	live	temperature	and	light	logger,	visit		
www.exploringarduino.com/content/ch6.	You	can	also	find	this	video	on		
the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Commanding Your Computer to Do Your Bidding

In addition to typing like a keyboard, you can also use the Leonardo to emu-
late key combinations. On Windows computers, pressing the Windows+L keys
locks the computer screen (On Linux, you can use Control+Alt+L). Using that
knowledge paired with a light sensor, you can have your computer lock auto-
matically when you turn the lights off. OS X uses the Control+Shift+Eject, or
Control+Shift+Power keys to lock the machine, which can’t be emulated by the
Leonardo because it cannot send an Eject or Power simulated button press. In
this example, you learn how to lock a Windows computer. You can continue to
use the same circuit shown in Figure 6-16, though only the light sensor will be
used in this example.

Run the previous sketch at a few different light levels and see how the light
sensor reading changes. Using this information, you should pick a threshold
value below which you will want your computer to lock. (In my room, I found
that with the lights off the value was about 300, and it was about 700 with the
lights on. So, I chose a threshold value of 500.) When the light sensor value drops
below that value, the lock command will be sent to the computer. You might
want to adjust this value for your environment.

Load the sketch in Listing 6-10 on to your Arduino. Just make sure you have
your threshold set to a reasonable value first, by testing what light levels in your
room correspond to various analog levels. If you pick a poorly calibrated value,
it might lock your computer as soon as you upload it!

140 Part II ■ Controlling Your Environment

Listing 6-10: Light-Based Computer Lock—lock_computer.ino

//Locks your computer when you turn off the lights

const int LIGHT =1; //Light sensor on analog pin 1

const int THRESHOLD =500; //Brightness must drop below this level

 //to lock computer

void setup()

{

 Keyboard.begin();

}

void loop()

{

 int brightness = analogRead(LIGHT); //Read the light level

 if (brightness < THRESHOLD)

 {

 Keyboard.press(KEY_LEFT_GUI);

 Keyboard.press('l');

 delay(100);

 Keyboard.releaseAll();

 }

}

After loading the program, try flipping the lights off. Your computer should
lock immediately. The following video demo shows this in action. This sketch
implements two new keyboard functions: Keyboard.press() and Keyboard
.releaseAll(). Running Keyboard.press() is equivalent to starting to hold a
key down. So, if you want to hold the Windows key and the L key down at the
same time, you run Keyboard.press() on each. Then, you delay for a short period
of time and run the Keyboard.releaseAll()function to let go of, or release,
the keys. Special keys are defined on the Arduino website: http://arduino.cc/
en/Reference/KeyboardModifiers. (This definition table is also linked from
the content page for this chapter at www.exploringarduino.com/content/ch6.)

NOTE To	watch	a	demo	video	of	the	light-activated	computer	lock,	visit		
www.exploringarduino.com/content/ch6.	You	can	also	find	this	video		
on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Emulating	a	Mouse
Using a two-axis joystick and some pushbuttons, you can use an Arduino
Leonardo to make your own mouse! The joystick will control the mouse location,
and the buttons will control the left, middle, and right buttons of the mouse.

 Chapter 6 ■ USB and Serial Communication 141

Just like with the keyboard functionality, the Arduino language has some great
functions built in that make it easy to control mouse functionality.

First things first, get your circuit set up with a joystick and some buttons as
shown in Figure 6-17. Don’t forget that your buttons need to have pull-down
resistors! The joystick will connect to analog pins 0 and 1. (Joysticks are actually
just two potentiometers hooked up to a knob.) When you move the joystick all
the way in the x direction, it maxes out the x potentiometer, and the same goes
for the y direction.

Joystick Left
mouse
button

Middle
mouse
button

Right
mouse
button

Figure 6-17: Joystick Leonardo mouse circuit

Im
ag

e
cr

ea
te

d
w

ith
 F

ri
tz

in
g.

142 Part II ■ Controlling Your Environment

The diagram shows a SparkFun joystick, but any will do. (In the video described
after the listing, I used a Parallax joystick.) Depending on the orientation of the
joystick, you might need to adjust the bounds of the map function or swap the
x/y in the code below.

After you’ve wired the circuit, it’s time to load some code onto the Leonardo.
Load up the code in Listing 6-11 and play with the joystick and buttons; the
pointer on your screen should respond accordingly.

Listing 6-11: Mouse Control Code for the Leonardo—mouse.ino

// Make a Mouse!

const int LEFT_BUTTON =4; //Input pin for the left button

const int MIDDLE_BUTTON =3; //Input pin for the middle button

const int RIGHT_BUTTON =2; //Input pin for the right button

const int X_AXIS =0; //Joystick x-axis analog pin

const int Y_AXIS =1; //Joystick y-axis analog pin

void setup()

{

 Mouse.begin();

}

void loop()

{

 int xVal = readJoystick(X_AXIS); //Get x-axis movement

 int yVal = readJoystick(Y_AXIS); //Get y-axis movement

 Mouse.move(xVal, yVal, 0); //Move the mouse

 readButton(LEFT_BUTTON, MOUSE_LEFT); //Control left button

 readButton(MIDDLE_BUTTON, MOUSE_MIDDLE); //Control middle button

 readButton(RIGHT_BUTTON, MOUSE_RIGHT); //Control right button

 delay(5); //This controls responsiveness

}

//Reads joystick value, scales it, and adds dead range in middle

int readJoystick(int axis)

{

 int val = analogRead(axis); //Read analog value

 val = map(val, 0, 1023, -10, 10); //Map the reading

 if (val <= 2 && val >= -2) //Create dead zone to stop mouse

drift

 return 0;

 else //Return scaled value

 return val;

 Chapter 6 ■ USB and Serial Communication 143

}

//Read a button and issue a mouse command

void readButton(int pin, char mouseCommand)

{

 //If button is depressed, click if it hasn't already been clicked

 if (digitalRead(pin) == HIGH)

 {

 if (!Mouse.isPressed(mouseCommand))

 {

 Mouse.press(mouseCommand);

 }

 }

 //Release the mouse if it has been clicked.

 else

 {

 if (Mouse.isPressed(mouseCommand))

 {

 Mouse.release(mouseCommand);

 }

 }

}

This is definitely one of the more complicated sketches that have been covered
so far, so it’s worth stepping through it to both understand the newly introduced
functions and the program flow used to make the joystick mouse.

Each of the button and joystick pins are defined at the top of the sketch, and
the mouse library is started in the setup. Each time through the loop, the joystick
values are read and mapped to movement values for the mouse. The mouse
buttons are also monitored and the button presses are transmitted if necessary.

A readJoystick() function was created to read the joystick values and map
them. Each joystick axis has a range of 1024 values when read into the analog-to-
digital converter (ADC). However, mouse motions are relative. In other words,
passing a value of 0 to Mouse.move() for each axis will result in no movement
on that axis. Passing a positive value for the x-axis will move the mouse to the
right, and a negative value will move it to the left. The larger the value, the
more the mouse will move. Hence, in the readJoystick() function, a value of
0 to 1023 is mapped to a value of –10 to 10. A small buffer value around 0 is
added where the mouse will not move. This is because even while the joystick
is in the middle position, the actual value may fluctuate around 512. By setting
the desired distance back to 0 after being mapped within a certain range, you
guarantee that the mouse will not move on its own while the joystick is not being
actuated. Once the values are ascertained, Mouse.move() is given the x and y
values to move the mouse. A third argument for Mouse.move() determines the
movement of the scroll wheel.

144 Part II ■ Controlling Your Environment

To detect mouse clicks, the readButton() function was created so that it can
be repeated for each of the three buttons to detect. The function detects the cur-
rent state of the mouse with the Mouse.isPressed() command and controls the
mouse accordingly using the Mouse.press() and Mouse.release() functions.

NOTE To	watch	a	demo	video	of	the	joystick	mouse	controlling	a	computer	
pointer,	check	out	www.exploringarduino.com/content/ch6.	You	can	also	
find	this	video	on	the	Wiley	website	shown	at	the	beginning	of	this	chapter.

Summary

In this chapter you learned about the following:

■■ Arduinos connect to your computer via a USB-to-serial converter.

■■ Different Arduinos facilitate a USB-to-serial conversion using either dedi-
cated ICs or built-in USB functionality.

■■ Your Arduino can print data to your computer via your USB serial
connection.

■■ You can use special serial characters to format your serial printing with
newlines and tabs.

■■ All serial data is transmitted as character that can be converted to integers
in a variety of ways.

■■ You can send comma-separated integer lists and use integrated functions
to parse them into commands for your sketch.

■■ You can send data from your Arduino to a Processing desktop application.

■■ You can receive data from a Processing application on your desktop to
control peripherals connected to your Arduino.

■■ An Arduino Leonardo can be used to emulate a keyboard or mouse.

	Contents
	Introduction
	Who This Book Is For
	What You’ll Learn in This Book
	Features Used in This Book
	Getting the Parts
	What You’ll Need
	Source Code and Digital Content
	Errata
	Supplementary Material and Support
	What Is an Arduino?
	An Open Source Platform
	Beyond This Book

	Part I: Arduino Engineering Basics
	Chapter 1: Getting Up and Blinking
	Exploring the Arduino Ecosystem
	Arduino Functionality
	Atmel Microcontroller
	Programming Interfaces
	General I/O and ADCs
	Power Supplies

	Arduino Boards

	Creating Your First Program
	Downloading and Installing the Arduino IDE
	Running the IDE and Connecting to the Arduino
	Breaking Down Your First Program

	Summary

	Chapter 2: Digital Inputs, Outputs, and Pulse-Width Modulation
	Digital Outputs
	Wiring Up an LED and Using Breadboards
	Working with Breadboards
	Wiring LEDs

	Programming Digital Outputs
	Using For Loops

	Pulse-Width Modulation with analogWrite()
	Reading Digital Inputs
	Reading Digital Inputs with Pulldown Resistors
	Working with “Bouncy” Buttons

	Building a Controllable RGB LED Nightlight
	Summary

	Chapter 3: Reading Analog Sensors
	Understanding Analog and Digital Signals
	Comparing Analog and Digital Signals
	Converting an Analog Signal to a Digital One

	Reading Analog Sensors with the Arduino: analogRead()
	Reading a Potentiometer
	Using Analog Sensors
	Working with Analog Sensors to Sense Temperature

	Using Variable Resistors to Make Your Own Analog Sensors
	Using Resistive Voltage Dividers
	Using Analog Inputs to Control Analog Outputs

	Summary

	Part II: Controlling Your Environment
	Chapter 4: Using Transistors and
	Driving DC Motors
	Handling High-Current Inductive Loads
	Using Transistors as Switches
	Using Protection Diodes
	Using a Secondary Power Source
	Wiring the Motor

	Controlling Motor Speed with PWM
	Using an H-Bridge to Control DC Motor Direction
	Building an H-bridge Circuit
	Operating an H-bridge Circuit

	Driving Servo Motors
	Understanding the Difference Between Continuous Rotation and Standard Servos
	Understanding Servo Control
	Controlling a Servo

	Building a Sweeping Distance Sensor
	Summary

	Chapter 5: Making Sounds
	Understanding How Speakers Work
	The Properties of Sound
	How a Speaker Produces Sound

	Using tone() to Make Sounds
	Including a Definition File
	Wiring the Speaker
	Making Sound Sequences
	Using Arrays
	Making Note and Duration Arrays
	Completing the Program

	Understanding the Limitations of the tone() Function

	Building a Micro Piano
	Summary

	Chapter 6: USB and Serial Communication
	Understanding the Arduino’s Serial Communication Capabilities
	Arduino Boards with an Internal or External FTDI USB-to-Serial Converter
	Arduino Boards with a Secondary USB-Capable ATMega MCU Emulating a Serial Converter
	Arduino Boards with a Single USB-Capable MCU
	Arduino Boards with USB-Host Capabilities

	Listening to the Arduino
	Using print Statements
	Using Special Characters
	Changing Data Type Representations

	Talking to the Arduino
	Reading Information from a Computer or Other Serial Device
	Telling the Arduino to Echo Incoming Data
	Understanding the Differences Between Chars and Ints
	Sending Single Characters to Control an LED
	Sending Lists of Values to Control an RGB LED

	Talking to a Desktop App
	Talking to Processing
	Installing Processing
	Controlling a Processing Sketch from Your Arduino
	Sending Data from Processing to Your Arduino

	Learning Special Tricks with the Arduino Leonardo (and Other 32U4-Based Arduinos)
	Emulating a Keyboard
	Typing Data into the Computer
	Commanding Your Computer to Do Your Bidding

	Emulating a Mouse

	Summary

	Chapter 7: Shift Registers
	Understanding Shift Registers
	Sending Parallel and Serial Data
	Working with the 74HC595 Shift Register
	Understanding the Shift Register Pin Functions
	Understanding How the Shift Register Works

	Shifting Serial Data from the Arduino
	Converting Between Binary and Decimal Formats

	Controlling Light Animations with a Shift Register
	Building a “Light Rider”
	Responding to Inputs with an LED Bar Graph

	Summary

	Part III: Communication Interfaces
	Chapter 8: The I2C Bus
	History of the I2C Bus
	I2C Hardware Design
	Communication Scheme and ID Numbers
	Hardware Requirements and Pull-Up Resistors

	Communicating with an I2C Temperature Probe
	Setting Up the Hardware
	Referencing the Datasheet
	Writing the Software

	Combining Shift Registers, Serial Communication, and I2C Communications
	Building the Hardware for a Temperature Monitoring System
	Modifying the Embedded Program
	Writing the Processing Sketch

	Summary

	Chapter 9: The SPI Bus
	Overview of the SPI Bus
	SPI Hardware and Communication Design
	Hardware Configuration
	Communication Scheme

	Comparing SPI to I2C
	Communicating with an SPI Digital Potentiometer
	Gathering Information from the Datasheet
	Setting Up the Hardware
	Writing the Software

	Creating an Audiovisual Display Using SPI Digital Potentiometers
	Setting Up the Hardware
	Modifying the Software

	Summary

	Chapter 10: Interfacing with
	Setting Up the LCD
	Using the LiquidCrystal Library to Write to the LCD
	Adding Text to the Display
	Creating Special Characters and Animations

	Building a Personal Thermostat
	Setting Up the Hardware
	Displaying Data on the LCD
	Adjusting the Set Point with a Button
	Adding an Audible Warning and a Fan
	Bringing It All Together: The Complete Program
	Taking This Project to the Next Level

	Summary

	Chapter 11: Wireless Communication with XBee Radios
	Understanding XBee Wireless Communication
	XBee Radios
	The XBee Radio Shield and Serial Connections
	3.3V Regulator
	Logic Level Shifting
	Associate LED and RSSI LED
	UART Selection Jumper or Switch
	Hardware vs. Software Serial UART Connection Option

	Configuring Your XBees
	Configuring via a Shield or a USB Adapter
	Programming Option 1: Using the Uno as a Programmer
(Not Recommended)
	Programming Option 2: Using the SparkFun USB Explorer (Recommended)

	Choosing Your XBee Settings and Connecting Your XBee to Your Host Computer
	Configuring Your XBee with X-CTU
	Configuring Your XBee with a Serial Terminal

	Talking with Your Computer Wirelessly
	Powering Your Remote Arduino
	USB with a Computer or a 5V Wall Adapter
	Batteries
	Wall Power Adapters

	Revisiting the Serial Examples: Controlling Processing with a Potentiometer
	Revisiting the Serial Examples: Controlling an RGB LED

	Talking with Another Arduino: Building a Wireless Doorbell
	System Design
	Transmitter Hardware
	Receiver Hardware
	Transmitter Software
	Receiver Software

	Summary

	Part IV: Advanced Topics and Projects
	Chapter 12: Hardware and Timer Interrupts
	Using Hardware Interrupts
	Knowing the Tradeoffs Between Polling and Interrupting
	Ease of Implementation (Software)
	Ease of Implementation (Hardware)
	Multitasking
	Acquisition Accuracy

	Understanding the Arduino’s Hardware Interrupt Capabilities
	Building and Testing a Hardware-Debounced Button Interrupt Circuit
	Creating a Hardware-Debouncing Circuit
	Assembling the Complete Test Circuit
	Writing the Software

	Using Timer Interrupts
	Understanding Timer Interrupts
	Getting the Library
	Executing Two Tasks Simultaneously(ish)

	Building an Interrupt-Driven Sound Machine
	Sound Machine Hardware
	Sound Machine Software

	Summary

	Chapter 13: Data Logging with SD Cards
	Getting Ready for Data Logging
	Formatting Data with CSV Files
	Preparing an SD Card for Data Logging

	Interfacing the Arduino with an SD Card
	SD Card Shields
	SD Card SPI Interface
	Writing to an SD Card
	Reading from an SD Card

	Using a Real-Time Clock
	Understanding Real-Time Clocks
	Using the DS1307 Real-Time Clock
	Using the RTC Arduino Third-Party Library

	Using the Real-Time Clock
	Installing the RTC and SD Card Modules
	Updating the Software

	Building an Entrance Logger
	Logger Hardware
	Logger Software
	Data Analysis

	Summary

	Chapter 14: Connecting Your Arduino
	The Web, the Arduino, and You
	Networking Lingo
	IP Address
	Network Address Translation
	MAC Address
	HTML
	HTTP
	GET/POST
	DHCP
	DNS

	Clients and Servers
	Networking Your Arduino

	Controlling Your Arduino from the Web
	Setting Up the I/O Control Hardware
	Designing a Simple Web Page
	Writing an Arduino Server Sketch
	Connecting to the Network and Retrieving an IP via DHCP
	Replying to a Client Response
	Putting It Together: Web Server Sketch

	Controlling Your Arduino via the Network
	Controlling Your Arduino over the Local Network
	Using Port Forwarding to Control your Arduino from Anywhere

	Sending Live Data to a Graphing Service
	Building a Live Data Feed on Xively
	Creating a Xively Account
	Creating a Data Feed
	Installing the Xively and HttpClient Libraries
	Wiring Up Your Arduino
	Configuring the Xively Sketch and Running the Code
	Displaying Data on the Web

	Adding Feed Components
	Adding an Analog Temperature Sensor
	Adding Additional Sensor Readings to the Datastream

	Summary

	Appendix: Deciphering the ATMega Datasheet and Arduino Schematics
	Reading Datasheets
	Breaking Down a Datasheet
	Understanding Component Pin-outs

	Understanding the Arduino Schematic

	Index

